Static Inference of Transmission Data Sizes in Distributed Systems

نویسندگان

  • Elvira Albert
  • Jesús Correas Fernández
  • Enrique Martin-Martin
  • Guillermo Román-Díez
چکیده

We present a static analysis to infer the amount of data that a distributed system may transmit. The different locations of a distributed system communicate and coordinate their actions by posting tasks among them. A task is posted by building a message with the task name and the data on which such task has to be executed. When the task completes, the result can be retrieved by means of another message from which the result of the computation can be obtained. Thus, the transmission data size of a distributed system mainly depends on the amount of messages posted among the locations of the system, and the sizes of the data transferred in the messages. Our static analysis has two main parts: (1) we over-approximate the sizes of the data at the program points where tasks are spawned and where the results are received, and (2) we over-approximate the total number of messages. Knowledge of the transmission data sizes is essential, among other things, to predict the bandwidth required to achieve a certain response time, or conversely, to estimate the response time for a given bandwidth. A prototype implementation in the SACO system demonstrates the accuracy and feasibility of the proposed analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Static Task Allocation in Distributed Systems Using Parallel Genetic Algorithm

Over the past two decades, PC speeds have increased from a few instructions per second to several million instructions per second. The tremendous speed of today's networks as well as the increasing need for high-performance systems has made researchers interested in parallel and distributed computing. The rapid growth of distributed systems has led to a variety of problems. Task allocation is a...

متن کامل

Effect of Distributed Power-Flow Controller (DPFC) on Power System Stability

Distributed flexible AC- transmission system (D-FACTS) is a recently advanced FACTS device with high flexibility and smaller size. The DPFC can control power flow in transmission lines, regulate bus voltages and it can also enhance stability margin in power grids. Adaptive-neural network-based fuzzy inference system (ANFIS) combines features of artificial neural network and fuzzy controller. Th...

متن کامل

Transient Minimization Within Static Var Compensated Distribution Systems

VAR support should be supplied as close to the load as possible to minimize transmission losses. For voltage control and for improvement of total power factor in a distribution system the circuit- breaker switched capacitor banks can be used. The problems with this solution are the voltage steps caused by the large sizes of the capacitor banks as well as the transients caused on insertion. Thyr...

متن کامل

Optimal placement and sizing of distributed generation considering FACTS devices and load uncertainty using hybrid sine-cosine algorithm and particle swarm optimization (HSCA-PSO)

Using Distributed Generation (DG) in electrical distribution networks brings many advantages and thus, optimal placement and sizing of these units become important. Most of the researches in this field neglect the effect of transmission system on distribution section. These researches also ignore the effect of Flexible Alternating Current Transmission Systems (FACTS). This thesis proposes a new...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014